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Abstract In this paper we present a new methodology for the development of four-
step hybrid type methods of sixth algebraic order with vanished phase-lag and its
derivatives. The methodology is based on the vanishing of the phase-lag and its deriv-
atives on its level of the hybrid method. We present a comparative error and stability
analysis for the produced new method. The efficiency of the new obtained methods is
examined by application to the resonance problem of the Schrödinger equation.
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1 Introduction

1.1 Description of the problem and of the new proposed method

The numerical solution of second order initial or boundary value problems of the form:

q ′′ (r) = f (r, q (r)) (1)

with periodical and/or oscillating solutions is investigated in this paper. We note that
there are many real problems in physics and chemistry with mathematical models
which are expressed as initial or boundary value problems if the above mentioned
category (for example the Schrödinger’s equation).

More specifically in this paper we study a new methodology for the construction
of efficient four-step hybrid type methods. The subjects of the study are:

• The development of numerical hybrid methods (i.e. methods with more that one
stage) with vanished of the phase-lag and its derivatives on each level of the hybrid
method

• The vanishing of the phase-lag and its derivatives on each level of the method
• How the above vanishing affects the efficiency of the obtained numerical scheme

and finally
• If the above methodology produces more efficient methods than the vanishing of

the phase-lag and its derivatives in the whole of the method (and not on each stage).

The methods constructed with the methodology presented in this paper are very
effective not only to problems with oscillatory and / or periodic behavior of the solution
but also to problems with solution which contains the functions cos and sin or to
problems with solution that is a combination of the functions cos and sin.

The main objective of the research presented here is to determine, following the new
presented methodology mentioned above, a hybrid type two-stage four-step method
with the following properties:

• the highest possible algebraic order
• the phase-lag vanished on each stage of the method
• the first derivative of the phase-lag vanished on each stage of the method as well

The satisfaction of the above objectives requires the determination of the phase-lag
and its first derivative. Using the literature of [1] and [2], Simos and co-authors has
determined a direct formula for the computation of the phase-lag for a 2 m-method.
Based on this formula we will calculate also the first derivative of the phase-lag.

The efficiency of the algorithm which will be developed using the new methodology
presented above, will be investigated with the following studies:

• the comparative study of the local truncation error of the new produced method
with other methods of the same form (comparative error analysis),

• the study of the stability analysis of the new obtained method and
• the results obtained by the application of the new produced method to the resonance

problem of the one-dimensional time independent Schrödinger equation (see for
more details [3]).
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The format of the paper is given below:

• In Sect. 2 we present the phase-lag analysis of symmetric 2k-methods.
• The new hybrid two-stage four-step method is developed in Sect. 3.
• In Sect. 4 we develop the comparative error analysis.
• The stability properties of the new obtained method are studied in Sect. 5.
• In Sect. 6, the numerical results are presented.
• Finally, remarks and conclusions are presented in Sect. 7.

1.2 Bibliography of the research subject

The aim and scope of the research subject is the development of efficient and credible
numerical methods for the numerical solution of the second order initial or boundary
value problems of the form (1) (see for example [1,3–100]). Examples of the problems
which are faced are: the radial Schrödinger equation, the N-body problem etc.

The main research areas during the last decades on the above presented research
subject was:

• Phase-fitted methods and numerical methods with minimal phase-lag
• Exponentially and trigonometrically fitted Runge–Kutta and Runge–Kutta Nys-

tröm methods
• Multistep phase-fitted methods and multistep methods with minimal phase-lag
• Symplectic integrators
• Exponentially and trigonometrically fitted multistep methods
• Nonlinear methods

In the following we present some bibliography on these areas:

1. Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta Nyström type have been obtained in [4–10].

2. In [11–16] exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta Nyström methods are constructed.

3. Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [1,3,21–43].

4. Symplectic integrators are investigated in [44–72].
5. Exponentially and trigonometrically fitted multistep methods have been produced

in [73–93].
6. Nonlinear methods have been studied in [94] and [95]
7. Review papers have been presented in [96–100]
8. Special issues and Symposia in International Conferences have been developed

on this subject (see [101–104])

2 Study of the phase-lag for finite difference symmetric 2 p-step methods

We consider the numerical solution of the initial or boundary value problem of the
form (1).

In order to study the approximate solution of the above mentioned problem we
divide the interval of integration [a, b] into p + 1 equally spaced intervals {xi }p

i=0.
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For the numerical solution of the above mentioned problem we consider a p-step
method which is applied over the above mentioned intervals using the step-size h =
|xi+1 − xi |, i = 0(1)p − 1. We will study the case of symmetric 2 p-step methods i.e.
the case for which: ai = ap−i , bi = bp−i , i = 0(1)

p
2 .

In order to investigate the phase-lag for the above mentioned symmetric 2 p-step
method, the following algorithm must be followed:

1. Application of the symmetric 2 p-step method to the scalar test equation

q ′′ = −w2 q (2)

2. The above application leads to the following difference equation

Ap(v) qn+p+ · · ·+ A1(v) qn+1+ A0(v) qn + A1(v) qn−1+· · ·+ Ap(v) qn−p =0

(3)

where v = w h, h is the step length and A0(v), A1(v), . . ., Ap(v) are polynomials
of v = w h.

3. The above difference equation (3) corresponds to the following characteristic equa-
tion The equation given by:

Ap(v) λp+· · ·+ A1(v) λ+ A0(v)+ A1(v) λ−1+· · ·+ Ap(v) λ−p =0 (4)

4. Based on the above mentioned polynomials A0(v), A1(v), . . ., Ap(v) the following
theorem has been proved (see [24] and [26])

Theorem 1 [24] and [26] The symmetric 2m-step method with characteristic equation
given by (4) has phase-lag order q and phase-lag constant c given by:

− c vq+2+O
(
vq+4

)
= 2 Ap (v) cos (p v)+· · ·+2 A j (v) cos ( j v)+· · ·+ A0 (v)

2 p2 Ap (v)+· · ·+2 j2 A j (v)+· · ·+2 A1 (v)

(5)

Remark 1 The formula (5) is a direct method for the calculation of the phase-lag of
any symmetric 2 p-step method.

3 Development of the new method

Let us consider the family of hybrid type symmetric four-step methods for the numer-
ical solution of problems of the form q ′′ = f (x, q):

q̂n+2 =2 qn+1−2 qn +2 qn−1−qn−2+h2
(

b0 q ′′
n+1+b1 q ′′

n +b0 q ′′
n−1

)
qn+2−2 qn+1

+2 qn −2 qn−1+qn−2 =h2
[

b4
(
q̂ ′′

n+2+q ′′
n−2

)+b3
(
q ′′

n+1+q ′′
n−1

)+b2 q ′′
n

]

(6)
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Notations for the above mentioned general family of methods:

1. the coefficient bi , i = 0(1)4 are free parameters,
2. h is the step size of the integration,
3. n is the number of steps,
4. qn is the approximation of the solution on the point xn

5. xn = x0 + n h and
6. x0 is the initial value point.

3.1 First level of the hybrid method

Let us now consider the first level of the above mentioned method:

qn+2 − 2 qn+1 + 2 qn − 2 qn−1 + qn−2 = h2
(

b0 q ′′
n+1 + b1 q ′′

n + b0 q ′′
n−1

)
(7)

Applying the above part of the method (7) to the scalar test equation (2), this leads
to the difference equation (3) with p = 2 and A j (v), j = 0, 1, 2 given by:

A2 (v) = 1, A1 (v) = −2 + v2 b0

A0 (v) = 2 + v2 b1 (8)

Requiring the above method to have the phase-lag and its first derivative vanished,
the following system of equations is obtained (using the formulae (5) (for p = 2)
and (8)):

Phase-Lag = 1

2

4 (cos (v))2 − 4 cos (v) + 2 cos (v) v2b0 + v2b1

2 + v2b0
= 0 (9)

First Derivative of the Phase-Lag = − T0(
2 + v2b0

)2 = 0 (10)

where

T0 = 8 cos (v) sin (v) + 4 cos (v) sin (v) v2b0 − 4 sin (v)

+ sin (v) v4b0
2 − 8 cos (v) v b0 − 2 v b1 + 4 v b0 (cos (v))2

The coefficients of the first level of the proposed hybrid four-step methods are
defined by the solution of the above system of Eqs. (9)–(10):

b0 = −2 v sin (2 v) + 2 sin (v) v + 4 cos (v) − 2 − 2 cos (2 v)

sin (v) v3

b1 = 6 cos (v) + 2 cos (3 v) + v sin (3 v) + sin (v) v − 4 − 4 cos (2 v)

sin (v) v3 (11)

The formulae given by (11) are subject to heavy cancellations for some values of
|w|. In this case the following Taylor series expansions should be used:
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Fig. 1 Behavior of the coefficients of the new proposed method given by (11) for several values of v = w h

b0 = 7

6
− 3

20
v2 + 31

10080
v4 − 47

181440
v6 − 31

1900800
v8 − 1097

622702080
v10

− 185869

1046139494400
v12 − 1067441

59281238016000
v14 − 221930509

121645100408832000
v16

− 4722116561

25545471085854720000
v18+· · · b1 =−1

3
+ 3

10
v2− 409

5040
v4+ 611

90720
v6

− 2621

6652800
v8 + 12973

1556755200
v10 − 235783

373621248000
v12 − 26441

846874828800
v14

− 45172549

12164510040883200
v16 − 4713203623

12772735542927360000
v18 + · · · (12)

The behavior of the coefficients is given in the following Fig. 1.

3.2 Second level of the hybrid method

We consider now the second level of the proposed method (6):

qn+2 − 2 qn+1 + 2 qn − 2 qn−1 + qn−2

= h2
(

b4 q ′′
n+2 + b3 q ′′

n+1 + b2 q ′′
n + b3 q ′′

n−1 + b4 q ′′
n−2

)
(13)

where b2 = 2 − 2 b4 − 2 b3 (Fig. 2).
If we apply the second level (13) to the scalar test equation (2), the difference

equation (3) with p = 2 and A j (v), j = 0, 1, 2 given by:

A2 (v) = 1 + v2 b4, A1 (v) = −2 + v2 b3

A0 (v) = 2 + 2 v2
(

1 − b4 − b3

)
(14)

is produced.
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Fig. 2 Behavior of the coefficients of the new proposed method given by (17) for several values of v = w h

If now we require the above second level of the method (6) to have the phase-lag
and its first derivative vanished, the following system of equations is obtained (using
the formulae (5) (for p = 2) and (14)):

Phase-Lag

= 2 (cos (v))2+2 (cos (v))2 v2b4+cos (v) v2b3−2 cos (v)−2 v2b4−v2b3+v2

2+4 v2b4+v2b3
=0

(15)

First Derivative of the Phase-Lag = − T1(
2 + 4 v2b4 + v2b3

)2 = 0 (16)

where
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T1 = −4 v − 4 sin (v) + 8 cos (v) sin (v) + 24 cos (v) v2b4 sin (v)

+4 cos (v) sin (v) v2b3 + 16 cos (v) v4b4
2 sin (v) + 4 sin (v) v4b3b4 + 8 vb4

+4 vb3 + 8 (cos (v))2 vb4 − 8 cos (v) vb3 + sin (v) v4b3
2 − 8 sin (v) v2b4

+4 v (cos (v))2 b3 − 16 vb4 cos (v) + 4 cos (v) v4b4 sin (v) b3

The coefficients of the second level of the proposed hybrid four-step methods are
defined by the solution of the above system of Eqs. (15)–(16):

b3 = T2

−4 v3 cos (v) + 3 v3 + v3 cos (2 v)

b4 = T3

4 v3 sin (2 v) − 5 sin (v) v3 − v3 sin (3 v)
(17)

where

T2 = −4 v3 cos (v) + 6 v + 2 v cos (2 v) − 8 v cos (v)

−2 sin (v) + 4 sin (2 v) − 2 sin (3 v)

T3 = v sin (3 v) + 5 sin (v) v + 14 cos (v) + 2 cos (3 v)

−2 sin (v) v3 − 4 v sin (2 v) − 8 − 8 cos (2 v)

The formulae given by (17) are subject to heavy cancellations for some values of
|w|. In this case the following Taylor series expansions should be used:

b3 = 13

15
− 19

756
v2 + 113

113400
v4 − 293

29937600
v6 − 8213

81729648000
v8

− 15563

980755776000
v10 − 128309

166728481920000
v12 − 7073837

212878925715456000
v14

− 273644387

210750136458301440000
v16 − 1539507169

32315020923606220800000
v18 + · · ·

b4 = 3

40
+ 19

3024
v2 + 139

259200
v4 + 5771

119750400
v6 + 271391

59439744000
v8

+ 135227

301771008000
v10 + 238998847

5335311421440000
v12 + 226149607

50089158991872000
v14

+ 40514887351

88736899561390080000
v16 + 221316705139

4787410507200921600000
v18 + · · ·

(18)

The behavior of the coefficients is given in the following Fig. 1.
The construction of this method is based on Flowchart mentioned in the Fig. 3.
The combination of the above two mentioned levels leads to the proposed method

(6) with the coefficients given by (11)–(12) and (17)–(18). The local truncation error
of this new proposed method (mentioned as H ybMeth I ) is given by:
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Fig. 3 Flowchart for the
construction of the method

LT EH ybMeth I = 751 h8

302400

(
q(8)

n + 2 w2 q(6)
n + w4 q(4)

n

)
+ O

(
h10

)

(19)

where q( j)
n is the j th derivative of qn .

4 Comparative error analysis

We will study the following methods:

4.1 Classical method (i.e. the method (6) with constant coefficients)

LT EC L = − 751 h8

302400
p(8)

n + O
(

h10
)

(20)
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Fig. 4 Flowchart for the error
analysis

4.2 The method with vanished phase-lag and its first and second derivatives
developed in [3]

LT EMeth I =− 751 h8

302400

(
p(8)

n +3 w2 p(6)
n +3 w4 p(4)

n +w6 p(2)
n

)
+O

(
h10

)
(21)

4.3 The new proposed hybrid method with vanished phase-lag and its first derivative
in each level developed in Sect. 3

LT EMeth I I = 751 h8

302400

(
q(8)

n + 2 w2 q(6)
n + w4 q(4)

n

)
+ O

(
h10

)
(22)

Following the Flowchart mentioned in the Fig. 4, we develop the error analysis.
Using the procedure described on the flowchart and the formulae:

q(2)
n = (V (x) − Vc + G) q(x)

q(3)
n =

(
d

dx
g (x)

)
q (x) + (g (x) + G)

d

dx
q (x)

q(4)
n =

(
d2

dx2 g (x)

)
q (x) + 2

(
d

dx
g (x)

)
d

dx
q (x) + (g (x) + G)2 q (x)

q(5)
n =

(
d3

dx3 g (x)

)
q (x) + 3

(
d2

dx2 g (x)

)
d

dx
q (x)

+4 (g (x) + G) q (x)
d

dx
g (x) + (g (x) + G)2 d

dx
q (x)
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q(6)
n =

(
d4

dx4 g (x)

)
q (x) + 4

(
d3

dx3 g (x)

)
d

dx
q (x)

+7 (g (x) + G) q (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

q (x)

+6 (g (x) + G)

(
d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)3 q (x)

q(7)
n =

(
d5

dx5
g (x)

)
q (x) + 5

(
d4

dx4 g (x)

)
d

dx
q (x)

+11 (g (x) + G) q (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
q (x)

d2

dx2 g (x)

+13 (g (x) + G)

(
d

dx
q (x)

)
d2

dx2 g (x) + 10

(
d

dx
g (x)

)2 d

dx
q (x)

+9 (g (x) + G)2 q (x)
d

dx
g (x) + (g (x) + G)3 d

dx
q (x)

q(8)
n =

(
d6

dx6 g (x)

)
q (x) + 6

(
d5

dx5
g (x)

)
d

dx
q (x)

+16 (g (x) + G) q (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
q (x)

d3

dx3 g (x)

+24 (g (x) + G)

(
d

dx
q (x)

)
d3

dx3 g (x) + 15

(
d2

dx2 g (x)

)2

q (x)

+48

(
d

dx
g (x)

)(
d

dx
q (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 q (x)
d2

dx2 g (x)

+28 (g (x) + G) q (x)

(
d

dx
g (x)

)2

+12 (g (x) + G)2
(

d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)4 q (x) . . .

we produce the expressions of the Local Truncation Errors. For the methods mentioned
above the expression can be found in the “Appendix 8”.

Two cases in terms of the value of E are studied during the investigation of the
Local Truncation Errors:

• The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

• G >> 0 or G << 0. Then |G| is a large number.

Based on the analysis presented above, we have the following asymptotic expan-
sions of the Local Truncation Errors:
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4.4 Classical method

LT EC L = h8
(

751

302400
q (x) G4 + · · ·

)
+ O

(
h10

)
(23)

4.5 The method with vanished phase-lag and its first and second derivatives
developed in [3]

LT EMeth I = h8
[(

751

75600

(
d2

dx2 g (x)

)
q (x)

)
G2 + · · ·

]
+ O

(
h10

)
(24)

4.6 The new proposed method with vanished phase-lag and its first, second and third
derivatives developed in Sect. 4

LT EMeth I I = h8
[(

751

33600

(
d2

dx2 g (x)

)
q (x) + 751

151200

(
d

dx
g (x)

)
d

dx
q (x)

+ 751

302400
(g (x))2 q (x)

)
G2 + · · ·

]
+ O

(
h10

)
(25)

From the above equations we have the following theorem:

Theorem 2 For the Classical Hybrid Four-Step Method the error increases as the
fourth power of G. For the the method with vanished phase-lag and its first and
second derivatives developed in [3], the error increases as the second power of G.
For the new obtained method with vanished phase-lag and its first derivative in each
level which developed in this paper, the error increases as the second power of G. So,
for the numerical solution of the time independent radial Schrödinger equation the
Method with Vanished Phase-Lag and its First, Second and Third Derivatives and the
New Proposed Method with Vanished Phase-Lag and its First Derivative in each level
are the most efficient and they have the same approximately behavior, from theoretical
point of view, especially for large values of |G| = |Vc − E |.

5 Stability analysis

Let us apply the new obtained method (6) with the coefficients given by (11)–(12) and
(17)–(18) to the scalar test equation:

q ′′ = −z2 q. (26)

This leads to the following difference equation:

A2 (s, v) (qn+2 + qn−2) + A1 (s, v) (qn+1 + qn−1) + A0 (s, v) qn = 0 (27)

where
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A2 (s, v) = 1,

A1 (s, v) = T4(
(cos (v))3 − (cos (v))2 − cos (v) + 1

)
v6

A0 (s, v) = −2
T5(

(cos (v))3 − (cos (v))2 − cos (v) + 1
)
v6

(28)

where

T4 = −4 (cos (v))4 s4v2 + 8 s4 (cos (v))4 + 12 s4 (cos (v))3 v sin (v)

−4 sin (v) v3s2 (cos (v))3 − 2 (cos (v))3 v6

−16 s4 (cos (v))3 + 6 s4v2 (cos (v))3

+8 s4 (cos (v))2 + 4 sin (v) v3s2 (cos (v))2 + 2 s4v4 (cos (v))2

−2 s2v6 (cos (v))2 − 20 s4 sin (v) v (cos (v))2

+2 s4v2 (cos (v))2 + 2 v6 (cos (v))2

−6 s4v2 cos (v) − 2 s4 sin (v) v3 cos (v) + 8 s4 sin (v) v cos (v)

+s4v4 cos (v) − s2v6 cos (v) + 2 v6 cos (v) + 2 s4v2 − 2 v6 − s4v4 + s2v6

T5 = −2 s4v2 (cos (v))5 + 8 s4 (cos (v))5

+8 sin (v) vs4 (cos (v))4 + 2 (cos (v))4 s4v2

−16 s4 (cos (v))4 + 8 s4 (cos (v))3 − (cos (v))3 s2v6

− (cos (v))3 v6 − 4 sin (v) v3s2 (cos (v))3

+ (cos (v))3 s4v4 − 12 s4 (cos (v))3 v sin (v)

+2 s4v2 (cos (v))3 + 4 sin (v) v3s2 (cos (v))2

+4 s4 sin (v) v (cos (v))2 − 2 s4v2 (cos (v))2 − 2 s4 sin (v) v3 (cos (v))2

+v6 (cos (v))2 − s2v6 (cos (v))2

+s4v4 (cos (v))2 + v6 cos (v) − v6

and s = z h.

Remark 2 The frequency of the scalar test equation (26), z, is not equal with the
frequency of the scalar test equation (2), w, i.e. z �= w.

The corresponding characteristic equation is given by:

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (29)

Definition 1 (see [17]) A symmetric 2k-step method with the characteristic equation
given by (4) is said to have an interval of periodicity

(
0, v2

0

)
if, for all s ∈ (

0, s2
0

)
, the

roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, . . . (30)

where ζ(s) is a real function of z h and s = z h.
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Fig. 5 Flowchart for the
stability analysis

The Flowchart mentioned in the Fig. 5 presents the stability analysis.

Definition 2 (see [17]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 6 we present the s–v plane for the method developed in this paper. A
shadowed area denotes the s–v region where the method is stable, while a white area
denotes the region where the method is unstable.

Remark 3 For the solution of the Schrödinger equation the frequency of the phase
fitting is equal to the frequency of the scalar test equation. So, for this case of problems
it is necessary to observe the surroundings of the first diagonal of the s–v plane.

We study now the case where the frequency of the scalar test equation is equal with
the frequency of phase fitting, i.e. in the case that s = v (i.e. see the surroundings of
the first diagonal of the s–v plane). Based on this study we extract the result that the
interval of periodicity of the new method developed in Sect. 3 is equal to: (0, 15).

From the above analysis we have the following theorem:

Theorem 3 The method developed in Sect. 3:

• is of sixth algebraic order,
• has the phase-lag and its first derivative equal to zero on the first level of the hybrid

method

1 Where S is a set of distinct points.
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Fig. 6 s–v plane of the the new obtained method with vanished phase-lag and its first derivative in each
level

• has the phase-lag and its first derivative equal to zero on the second level of the
hybrid method

• has an interval of periodicity equals to: (0, 15) in the case where the fre-
quency of the scalar test equation is equal with the frequency of phase
fitting

6 Numerical results

The approximate solution of the the one-dimensional time-independent Schrödinger
equation is used in order to study the efficiency of the new proposed method.

The one dimensional time independent Schrödinger equation (see [105,106]):

q ′′(r) = [l(l + 1)/r2 + V (r) − k2]q(r). (31)

is a boundary value problem with one boundary condition given by:

q(0) = 0 (32)
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and a the other boundary condition, for large values of r , determined by physical
conditions.

For completion point of view, we have to give the following definitions of the
functions, quantities and parameters for the above mathematical model (31):

1. The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

2. The quantity k2 is a real number denoting the energy,
3. The quantity l is a given integer representing the angular momentum,
4. V is a given function which denotes the potential.

It is necessary the value of parameter w (mentioned above (see for example the
notation after (3) and the formulae in Sect. 3) to be defined since the new proposed
method is a frequency dependent method. The above definition is required in order
the application of the new method to the radial Schrödinger equation to be possible.
Based on (31), the parameter w is given by (for the case l = 0):

w =
√

|V (r) − k2| = √|V (r) − E | (33)

where V (r) is the potential and E is the energy.

6.1 Woods–Saxon potential

The well known Woods–Saxon potential is used for the purpose of our numerical
application. We can write this potential as

V (r) = u0

1 + y
− u0 y

a (1 + y)2 (34)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods–Saxon potential is shown in Fig. 7.
From the literature (see for details [99]) it is known that for some potentials, such

as the Woods–Saxon potential, some critical points, which are defined from the inves-
tigation of the appropriate potential, are used in order parameter w to be defined.

For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [73] and [107]):

w =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(35)

For example, in the point of the integration region r = 6.5 − h, the value of w is
equal to:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of w is equal to:

√−50 + E , etc.
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Fig. 7 The Woods–Saxon potential

6.2 Radial Schrödinger equation: the resonance problem

We consider the approximate solution of the one-dimensional time independent
Schrödinger equation (31) in the known case of the Woods–Saxon potential (34)
as a purpose of this application. In order to solve numerically this problem we
have to approximate the true (infinite) interval of integration by a finite one.
We take the integration interval r ∈ [0, 15] for the purposes of our numerical
experiments. We consider equation (31) in a rather large domain of energies, i.e.,
E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to

q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (36)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions, respectively.
Thus, the solution of Eq. (31) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(37)

where δl is the phase shift that may be calculated from the formula
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tan δl = q (r2) S (r1) − q (r1) S (r2)

q (r1) C (r1) − q (r2) C (r2)
(38)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
q j , j = 0, (1)3 before starting a four-step method. From the initial condition, we
obtain q0. The values qi , i = 1(1)3 are obtained by using high order Runge–Kutta–
Nyström methods(see [108] and [109]). With these starting values, we evaluate at r2
of the asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for large r. (39)

We compute the approximate positive eigenenergies of the Woods–Saxon resonance
problem using:

• The eighth order multi-step method developed by Quinlan and Tremaine [18],
which is indicated as Method QT8.

• The tenth order multi-step method developed by Quinlan and Tremaine [18], which
is indicated as Method QT10.

• The twelfth order multi-step method developed by Quinlan and Tremaine [18],
which is indicated as Method QT12.

• The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[23], which is indicated as Method MCR4

• The exponentially-fitted method of Raptis and Allison [74], which is indicated as
Method MRA

• The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [22], which is indicated as Method MCR6

• The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL.2

• The hybrid four-step method of sixth algebraic order with vanished phase-lag and
its first and second derivatives (obtained in [3]), which is indicated as Method
MPHD

• The new hybrid four-step method of sixth algebraic order with vanished phase-lag
and its first derivative in each level (obtained in Sect. 3), which is indicated as
Method HYBPLDEA

• The four-step method of sixth algebraic order with vanished phase-lag and its
first derivative globally (obtained in “Appendix 9”), which is indicated as Method
HYBPLDEAGLOB

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
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Fig. 8 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

The numerically calculated eigenenergies are compared with reference values.3

In Figs. 8 and 9, we present the maximum absolute error Errmax = |log10 (Err) |
where

Err = |Ecalculated − Eaccurate| (40)

3 The reference values are computed using the well known two-step method of Chawla and Rao [22] with
small step size for the integration.
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Fig. 9 Accuracy (digits) for several values of C PU time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

of the eigenenergies E2 = 341.495874 and E3 = 989.701916, respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

7 Conclusions

In this paper we presented a new methodology for the development of four-step hybrid
type methods of sixth algebraic order with vanished phase-lag and its derivatives.
This new methodology is based on the vanishing of the phase-lag and its deriva-
tives in each level of the hybrid method. We have also investigated the influenc-
ing of the vanishing of the phase-lag and its first derivative on the efficiency of the
above mentioned methods for the numerical solution of the radial Schrödinger equa-
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tion and related problems. Based on the the above, a two-stage four-step sixth alge-
braic order methods with vanished phase-lag and its first derivative in each level was
obtained. This new method is very efficient on any problem with oscillating solutions
or problems with solutions contain the functions cos and sin or any combination of
them.

From the results presented above, we can make the following remarks:

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao with minimal phase-lag [23], which is
indicated as Method MCR4. Both the above mentioned methods are more efficient
than the exponentially-fitted method of Raptis and Allison [74], which is indicated
as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[18], which is indicated as Method QT10 is more efficient than the fourth alge-
braic order method of Chawla and Rao with minimal phase-lag [23], which
is indicated as Method MCR4. The Method QT10 is also more efficient than
the eighth order multi-step method developed by Quinlan and Tremaine [18],
which is indicated as Method QT8. Finally, the Method QT10 is more effi-
cient than the hybrid sixth algebraic order method developed by Chawla and
Rao with minimal phase-lag [22], which is indicated as Method MCR6 for
large CPU time and less efficient than the Method MCR6 for small CPU
time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[18], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [18], which is indicated as
Method QT10

4. The hybrid four-step two-stage sixth algebraic order method with vanished
phase-lag and its first and second derivatives (obtained in [3]), which is indi-
cated as Method MPHD is more efficient than all the methods mentioned
above.

5. The four-step method of sixth algebraic order with globally vanished phase-lag
and its first derivative (obtained in “Appendix 9”), which is indicated as Method
HYBPLDEAGLOB is more efficient than all the methods mentioned above except
the hybrid four-step two-stage sixth algebraic order method with vanished phase-
lag and its first and second derivatives (obtained in [3]), which is indicated as
Method MPHD.

6. The new hybrid four-step two-stage sixth algebraic order method with van-
ished phase-lag and its first derivative in each level of the method (obtained
in Sect. 3), which is indicated as Method HYBPLDEA is the most efficient
one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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8 Appendix A

8.1 New method with vanished phase-lag and its first derivative in each level
(developed in Sect. 3)

LTEHYBPLDEA = h8
[(

751

33600

(
d2

dx2 g (x)

)
q (x) + 751

151200

(
d

dx
g (x)

)
d

dx
q (x)

+ 751

302400
(g (x))2 q (x)

)
G2 +

(
751

21600

(
d4

dx4 g (x)

)
q (x)

+ 751

18900

(
d3

dx3 g (x)

)
d

dx
q (x)

+ 751

25200
g (x)

(
d

dx
q (x)

)
d

dx
g (x) + 751

10080
g (x) q (x)

d2

dx2 g (x)

+ 751

15120

(
d

dx
g (x)

)2

q (x) + 751

151200
(g (x))3 q (x)

)
G

+ 751

302400

(
d6

dx6 g (x)

)
q (x) + 751

50400

(
d5

dx5
g (x)

)
d

dx
q (x)

+ 751

18900
g (x) q (x)

d4

dx4 g (x) + 751

20160

(
d2

dx2 g (x)

)2

q (x)

+ 9763

151200

(
d

dx
g (x)

)
q (x)

d3

dx3 g (x)

+ 751

12600
g (x)

(
d

dx
q (x)

)
d3

dx3 g (x)

+ 751

25200
(g (x))2

(
d

dx
q (x)

)
d

dx
g (x)

+ 751

6300

(
d

dx
g (x)

) (
d

dx
q (x)

)
d2

dx2 g (x)

+ 8261

151200
(g (x))2 q (x)

d2

dx2 g (x)+ 751

10800
g (x) q (x)

(
d

dx
g (x)

)2

+ 751

302400
(g (x))4 q (x)

]
(41)

9 Appendix B

9.1 Development of the corresponding method (6) with vanished phase-lag and its
first derivative as a global method

Consider the method (6) with

b2 = 2 − 2 b4 − 2 b3 (42)

123



2564 J Math Chem (2013) 51:2542–2571

Applying this method to the scalar test equation (2), this leads to the difference
equation (3) with p = 2 and A j (v), j = 0, 1, 2 given by:

A2 (v) = −2 + v2
(

b4

(
2 − 7

6
v2

)
+ b3

)

A0 (v) = 2 − 4 b4v
2 + 1

3
v4b4 + 2 v2 − 2 v2b3 (43)

Requiring the above method to have the phase-lag and its first derivative vanished,
the following system of equations is produced (using the formulae (5) (for p = 2) and
(8)):

Phase-Lag = − T6

−12 − 12 b4v2 + 7 v4b4 − 6 v2b3
= 0 (44)

First Derivative of the Phase-Lag = T7(−12 − 12 b4v2 + 7 v4b4 − 6 v2b3
)2 = 0

(45)

where

T6 = 12 (cos (v))2 − 12 cos (v) + 12 cos (v) b4v
2

−7 cos (v) v4b4 + 6 cos (v) v2b3 − 12 b4v
2 + v4b4 + 6 v2 − 6 v2b3

T7 = 144 v − 288 cos (v) sin (v) b4v
2 + 168 cos (v) sin (v) v4b4

−144 cos (v) sin (v) v2b3 − 144 sin (v) b4v
4b3 + 84 sin (v) v6b4b3

−288 cos (v) sin (v) − 144 b4
2v5 + 84 v5b4 − 288 b4v + 48 v3b4

−144 vb3 − 288 v (cos (v))2 b4 − 144 v (cos (v))2 b3 + 336 (cos (v))2 b4v
3

+576 cos (v) b4v − 672 cos (v) v3b4 + 288 cos (v) vb3 − 144 sin (v) b4
2v4

+168 sin (v) b4
2v6 − 49 sin (v) v8b4

2 − 36 sin (v) v4b3
2 − 72 v5b4b3

+144 sin (v)

Solving the above system of Eqs. (44)–(45) we obtain the coefficients of method:

b3 = T8

−12 v5 sin (2 v)+14 cos (v) v4−14 v4 cos (3 v)−24 sin (v) v5−4 v4+4 v4 cos (2 v)

b4 = T9

24 v5 cos (v)+18 v5+6 v5 cos (2 v)−12 v4 sin (2 v)−7 v4 sin (3 v)−3 v4 sin (v)

(46)

where

T8 = 24 − 28 v2 − 48 cos (v) + 20 v4 − 24 cos (4 v) + 24 v sin (3 v)

−72 v sin (v) − 8 v2 cos (3 v) − 12 v sin (4 v)

+24 v sin (2 v) + 28 v4 cos (2 v) + 8 cos (v) v2 + 7 v3 sin (4 v)
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+34 v3 sin (2 v) + 10 v3 sin (3 v) + 28 v2 cos (4 v)

−14 v5 sin (2 v) + 48 cos (v) v4 + 66 sin (v) v3

−28 sin (v) v5 + 48 cos (3 v)

T9 = 6 sin (4 v) − 12 sin (2 v) + 24 cos (v) v3

+18 v3 + 6 v3 cos (2 v) − 9 v − 3 v cos (4 v) + 12 v cos (2 v)

The formulae given by (46) are subject to heavy cancellations for some
values of |w|. In this case the following Taylor series expansions should be
used:

b3 = 13

15
+ 751

37800
v2 − 13183

4536000
v4 + 2051099

20956320000
v6

− 18538909

8172964800000
v8 − 161500511

6865290432000000
v10

− 6304721869

2334198746880000000
v12 − 99206807572601

614687898003379200000000
v14

− 364118197589

36016869023635500000000
v16

− 1842607971683867

2923958569366074240000000000
v18 + · · ·

b4 = 3

40
− 751

151200
v2 + 137

1296000
v4 − 17819

5239080000
v6

− 159571

2043241200000
v8 − 83869147

13730580864000000
v10

− 5215749839

14005192481280000000
v12 − 3570319431619

153671974500844800000000
v14

− 53380779263761

36881273880202752000000000
v16

− 37973153075648473

421050033988714690560000000000
v18 + · · · (47)

The behavior of the coefficients is given in the following Fig. 10.
In Fig. 11 we present the s–v plane for the method developed in the “Appendix 9”.

A shadowed area denotes the s–v region where the method is stable, while a white
area denotes the region where the method is unstable.

For the case where the frequency of the scalar test equation is equal with the
frequency of phase fitting, i.e. in the case that s = v (i.e. see the surroundings of the
first diagonal of the s–v plane), the interval of periodicity of the method presented in
“Appendix 9” is equal to: (0, 11), i.e. the interval of periodicity of the new proposed
method in Sect. 3 is larger ((0, 15)) than the the interval of periodicity of the method
presented in “Appendix 9”.
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Fig. 10 Behavior of the coefficients of the new proposed method given by (46) for several values of v = w h

Fig. 11 s–v plane of the the method obtained in the “Appendix 9” with vanished phase-lag and its first
derivative as global method

123



J Math Chem (2013) 51:2542–2571 2567

10 Appendix C: Implementation of the new proposed method

Consider the method (6). The implementation of this new method is based on the
following algorithm:

Mn = 2 qn+1 − 2 qn + 2 qn−1 − qn−2

q̂n+2 = Mn + h2
(

b0 q ′′
n+1 + b1 q ′′

n + b0 q ′′
n−1

)

qn+2 = Mn + h2
[

b4
(
q̂ ′′

n+2 + qn−2
) + b3 (qn+1 + qn−1) + b2 qn

]
(48)
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